Isomeric Hypho Borane Structures $\mathrm{B}_{5} \mathrm{H}_{9} . \mathrm{L}\left[\mathrm{L}=\left(\mathrm{Ph}_{2} \mathbf{P}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}},\left(\mathbf{P h}_{\mathbf{2}} \mathrm{PCH}_{2}\right)_{2}\right.\right.$, or $\left.\left(\mathrm{Me}_{2} \mathbf{N C H}_{2}\right)_{2}\right] ; \boldsymbol{X}$-Ray Crystal and Molecular Structures

By Nathaniel W. Alcock,* Howard M. Colquhoun, Gerald Haran, Jeffrey F. Sawyer, and Malcolm G. H. Wallbridge*!
(Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL)

Summary The X-ray crystal structures of the $1: 1$ complexes, containing hypho boron polyhedra, derived from pentaborane(9) and the ligands bis(diphenylphosphino)methane (dppm), bis(diphenylphosphino)ethane (dppe), and tetramethylethylenediamine (tmed) are reported; the dppm and dppe structures both show the phosphorus atoms bridging the apical and basal atoms of a flattened pyramidal B_{5} framework (with rearrangement of the hydrogen atoms), the tmed complex differing markedly, with the ligand chelating one of the originally basal boron atoms, which becomes singly bonded to the apical boron atom and is separated from the remaining basal atoms by typical non-bonded contact distances.

The boranes and carbaboranes form closo-, nido-, arachno-, and hypho-derivatives, ${ }^{1}$ and a knowledge of all these classes is required before their co-operative role in rearrangement reactions of polyhedral frameworks, or as reaction intermediates can be fully rationalised. ${ }^{2}$ Unfortunately, very few examples of the hypho-class are known. Such systems should possess $(n+4)$ skeletal electron pairs with the framework atoms occupying n vertices of an ($n+3$) vertex polyhedron, and some support for this proposal has come from the crystal structures of the adducts $\mathrm{B}_{5} \mathrm{H}_{9} \cdot 2 \mathrm{~L}$ and $\mathrm{B}_{6} \mathrm{H}_{10} \cdot 2 \mathrm{~L}\left(\mathrm{~L}=\mathrm{PMe}_{3}\right)^{3,4}$ We now report the properties and crystal structures of three further derivatives which are isoelectronic with the hypothetical hypho- $\mathrm{B}_{5} \mathrm{H}_{11}{ }^{2-}$ ion, viz. $\mathrm{B}_{5} \mathrm{H}_{9} \cdot \mathrm{~L}[\mathrm{~L}=\mathrm{dppm}$, (I) ; dppe, (II); and tmed, (III) $\dagger]$ and which show significant differences, illustrating the diversity possible within such a related series.
The colourless adducts (I) (m.p. $185-187^{\circ} \mathrm{C}$), and (II) (m.p. $159-160^{\circ} \mathrm{C}$) were prepared by stirring equimolar quantities of $\mathrm{B}_{5} \mathrm{H}_{9}$ and the ligand in tetrahydrofuran

Figure 1. General view of molecule of (II). Distances P(1)$\mathrm{B}(1)$ and $\mathrm{P}(2)-\mathrm{B}(2)$ are $1.953(4)$ and $1.939(4) \AA$, respectively.

[^0](THF) at $25^{\circ} \mathrm{C}$ for 72 h ; variations in the conditions led to high-melting polymeric products. Both adducts are stable in air, and only slowly hydrolysed by hot water or acid, which is remarkable for $\mathrm{B}_{5} \mathrm{H}_{9}$ derivatives. However, the anions, $\mathrm{B}_{5} \mathrm{H}_{8} \cdot \mathrm{~L}^{-}\left(\mathrm{L}=\mathrm{dppm}\right.$ or dppe), are similar to $\mathrm{B}_{6} \mathrm{H}_{8}^{-}$ itself, and are readily hydrolysed. The adduct (III), obtained by condensing an excess of $\mathrm{B}_{5} \mathrm{H}_{9}$ on the ligand, was air-sensitive and could only be stored or recrystallised without decomposition if an excess of ligand was present.

Crystal data: (I), $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~B}_{5} \mathrm{P}_{2} \cdot \frac{1}{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}, M 481 \cdot 5$, orthorhombic, $a=7 \cdot 931(4), b=16.816(5), c=23 \cdot 271(8) \AA, U=$ $3105(2) \AA^{3}, D_{\mathrm{c}}=1 \cdot 03 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$, space group $P 2_{1} 2_{1} 2_{1}$. (II), $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~B}_{5} \mathrm{P}_{2}, M 461 \cdot 6$, orthorhombic, $a=14 \cdot 297(4)$, $b=16 \cdot 492(6), \quad c=22 \cdot 280(9) \AA, \quad U=5243(3) \AA^{3}, \quad D_{\mathrm{c}}=$ $1 \cdot 17 \mathrm{~g} \mathrm{~cm}^{-3}, Z=8$, space group $P b c a$. (III), $\mathrm{C}_{6} \mathrm{H}_{25} \mathrm{~B}_{5} \mathrm{~N}_{2}$, $M 179 \cdot 3$, orthorhombic, $a=12 \cdot 940(2), \quad b=12 \cdot 911(3)$, $c=15.046(2) \AA, U=2513.9(8) \AA^{3}, D_{\mathrm{c}}=0.95 \mathrm{~g} \mathrm{~cm}^{-3}, Z=$ 8 (2 independent molecules), space group $P 2_{1} 2_{1} 2_{1}$.

Three-dimentional X-ray data for all three compounds were collected on a Syntex $P 2_{1}$ diffractometer using Mo- K_{α} radiation $(\lambda=0.71069 \AA) .1850,2643$, and 1200 independent reflections with $I / \sigma(I)>3 \cdot 0$ were collected for compounds (I), (II), and (III), respectively. All three structures were solved using the direct methods programs NORMAL and MULTAN. Block diagonal least-squares refinement has produced R factors of 0.070 (I), 0.047 (II), and 0.062 (III), using anisotropic temperature factors for all non-hydrogen atoms except for the disordered THF solvent in (I) and for one of the tmed ligands in (III) which exists in two different conformations. \ddagger

Figure 2. ORTEP view of the ordered molecule of (III). Some distances are: $\mathrm{N}(1)-\mathrm{B}(2), 1 \cdot 684(9) ; \mathrm{N}(2)-\mathrm{B}(2), 1 \cdot 663(9)$; $\mathrm{B}(1)-\mathrm{B}(2), 1 \cdot 718(10) ; \mathrm{B}(1)-\mathrm{B}(3), 1 \cdot 823(12) ; \mathrm{B}(1)-\mathrm{B}(4), 1 \cdot 686(12)$; and $\mathrm{B}(1)-\mathrm{B}(5), 1 \cdot 808(12) \AA$. The non-bonded distances $\mathrm{B}(2) \cdots$ $\mathrm{B}(3)$ and $\mathrm{B}(2) \cdots \mathrm{B}(5)$ are $2 \cdot 728(12)$ and $2 \cdot 718(11) \AA$, respectively.

In both $\mathrm{B}_{5} \mathrm{H}_{9} \cdot \mathrm{dppm}(\mathrm{I})$ and $\mathrm{B}_{5} \mathrm{H}_{9} \cdot$ dppe (II) (Figure 1), the $\mathrm{B}_{5} \mathrm{H}_{9}$ species has become a shallow pyramid with major rearrangements of the hydrogen atoms; the hydrogen at the apex has moved to the base where three BH_{2} groups and two symmetrical $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridges are found. The phosphorus atoms bridge the apical and basal positions, and the angle
between opposite triangular B_{3} faces is $130.4^{\circ}(\mathrm{I})$ and $\mathbf{1 2 6 . 5}{ }^{\circ}$ (II) compared with $90-91^{\circ}$ in $\mathrm{B}_{5} \mathrm{H}_{9}$. With 9 electron pairs to accommodate in the hypho- B_{5} skeleton, the boron atoms should occupy all but three vertices of an 8 -vertex polyhedron, the most common example of which is the dodecahedron. However, the present B_{5} geometry more closely resembles a hexagonal bipyramid with a centre to apex height of $0.64 \AA$ and with edge lengths of 1.81 (equatorial) and $1.77 \AA$ (apex to base) in (I). The corresponding values in (II) are $0.645,1.82$, and $1.78 \AA$. Although full structural parameters have not been published, the hypho- B_{5} group in $\mathrm{B}_{6} \mathrm{H}_{9} \cdot 2 \mathrm{PMe}_{3}$ is apparently similar to those in (I) and (II). The average non-bonded distances of $\mathrm{B}(2) \cdots$ $\mathrm{B}(5)$ and $\mathrm{B}(3) \cdots \mathrm{B}(4)$ in (I) and (II) are 2.76 and $2.74 \AA$ respectively, close to the corresponding distance of $2.97 \AA$ in $\mathrm{B}_{5} \mathrm{H}_{11}{ }^{5}$

In $\mathrm{B}_{5} \mathrm{H}_{9} \cdot$ tmed (III) (Figure 2), both independent molecules contain a B_{5} framework which is markedly different from those in (I) and (II). Both nitrogen atoms donate to the same 'basal' boron atom. This atom has become singly bonded to the apical boron atom of the remaining $\mathrm{B}_{4} \mathrm{H}_{8}$ and is separated from the remaining basal atoms by non-bonded contact distances. Such an arrangement of atoms at the 'basal' boron appears to be unique amongst the boranes and their ions. The overall atomic arrangement is still an example of the hypho class, however, although the structure can be interpreted in terms of a zwitterionic canonical form (A), since it shows strong

(A)
similarities to adducts of the type $L \cdot B_{4} H_{8}$, where the B_{4} fragment would be an arachno species. ${ }^{6}$ The parent polyhedron for (III) can again be seen as a hexagonal bipyramid $\left[\angle \mathrm{B}(3)-\mathrm{B}(4)-\mathrm{B}(5) \quad 108.2\right.$ and $\left.107.0^{\circ}\right]$ especially as the $\mathrm{B}(1), \mathrm{B}(3), \mathrm{B}(4)-\mathrm{B}(1), \mathrm{B}(4), \mathrm{B}(5) \quad$ dihedral angles (129.4 and 127.4°) are higher than the value of $118 \cdot 1^{\circ}$ in $\mathrm{B}_{4} \mathrm{H}_{10} .{ }^{7}$ A structure involving the ligand chelating at a single boron position was previously favoured on the basis of i.r. and n.m.r. evidence, although the arrangement of boron and hydrogen atoms was uncertain. ${ }^{8}$ A gross movement of one of the basal boron atoms also occurs when $\mathrm{B}_{6} \mathrm{H}_{10}$ is converted into $\mathrm{B}_{6} \mathrm{H}_{10} \cdot 2 \mathrm{PMe}_{3}$, although in this case the resulting hypho- B_{6} fragment forms an open framework resembling the equatorial belt of an icosahedron rather than occupying all but three vertices of a 9 -vertex polyhedron such as a tricapped trigonal prism. ${ }^{4}$
The differences between the structures of (I) and (II) compared with (III) are surprising. In $\mathrm{B}_{5} \mathrm{H}_{9}$ there is residual negative charge at the apical boron atom, and the ability of the phosphine ligands to withdraw electron density through π-type interactions might account for their preferential co-ordination at the apical position, ${ }^{2,9}$ while the co-ordination of tmed at the basal positions could be predicted since no π-effects are possible. The different

[^1]framework arrangements in (I) and (II) and (III) could also reflect the need to delocalise the greater electron density placed on the B_{5} skeleton by the tmed ligand, and the retention of an integral B_{4} unit in (III) is significant in contrast to the two distinct B_{3} fragments in (I) and (II). Finally, the presence of a chelate effect is apparent in all the adducts, the monodentate ligand species being much less stable, so that, for example, $\mathrm{B}_{6} \mathrm{H}_{9} \cdot 2 \mathrm{PPh}_{3}$ is completely
dissociated at $25^{\circ} \mathrm{C} .{ }^{10}$ We are investigating the influence of related ligands on the skeletal atom arrangement.

We thank the S.R.C. for a grant for the diffractometer (N.W.A.), for postdoctoral fellowships (H.M.C. and G.H.), and for a research studentship (J.F.S.).
(Received, 15th March 1977; Com. 252.)
${ }^{1}$ K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1.
${ }^{2}$ R. W. Rudolph and D. A. Thompson, Inorg. Chem., 1974, 13, 2779.
${ }^{3}$ A. V. Fratini, G. W. Sullivan, M. L. Denniston, R. K. Hertz, and S. G. Shore, J. Amer. Chem. Soc., 1974, 96, 3013.
${ }^{4}$ M. Mangion, R. K. Hertz, M. L. Denniston, J. R. Long, W. R. Clayton, and S. G. Shore, J. Amer. Chem. Soc., 1976, 98, 449.
${ }^{5}$ L. R. Lavine and W. N. Lipscomb, J. Chem. Phys., 1954, 22, 614.
${ }^{6}$ M. D. LaPrade and C. E. Nordman, Inorg. Chem., 1969, 8, 1669.
${ }^{7}$ C. E. Nordman and W. N. Lipscomb, J. Chem. Phys., 1953, 21, 1856.
${ }^{8}$ N. E. Miller, H. C. Miller, and E. L. Muetterties, Inorg. Chem., 1964, 3, 867.
${ }^{9}$ See however, M. R. Churchill, J. J. Hackbarth, A. Davison, D. D. Traficante, and S. S. Wreford, J. Amer. Chem. Soc., 1974, 96, 4041.
${ }^{10}$ C. G. Savory and M. G. H. Wallbridge, J.C.S. Dalton, 1973, 179.

[^0]: $\dagger \mathrm{dppm}=\mathrm{bis}(\mathrm{diphenylphosphino})$ methane, $\mathrm{dppe}=\mathrm{bis}($ diphenylphosphino)ethane, tmed $=$ tetramethylethylenediamine.

[^1]: \ddagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

